青草青草久热精品视频在线观看,91精品国产免费入口,国产欧美亚洲精品,欧洲综合色,欧美日韩一本大道香蕉欧美,久热国产vs视频在线观看,天天色天天做

文武教師招聘網(wǎng)
首頁 浙江教師 福建教師 江蘇教師 廣東教師 江西教師 安徽教師 北京教師 上海教師 天津教師 湖南教師 湖北教師 河南教師
河北教師 海南教師 重慶教師 貴州教師 遼寧教師 吉林教師 山西教師 廣西教師 云南教師 陜西教師 甘肅教師 青海教師 四川教師
山東教師 內(nèi)蒙古教師 黑龍江教師 寧夏教師 新疆教師 西藏教師 教師面試 說課稿 考試大綱 教師招聘試題 特崗教師 教師資格考試 教師資格大綱
杭州教師  廣州教師  長沙教師  南京教師  福州教師  南昌教師  教師考試大綱  教師資格大綱  政治資料  地理資料
您現(xiàn)在的位置:首頁 >> 說課稿 >> 初中數(shù)學說課稿 >> 內(nèi)容

初中數(shù)學說課稿:初中數(shù)學18.2《勾股定理的逆定理》說課稿

時間:2011-8-31 8:22:20 點擊:

一、教材分析 :

(一)、本節(jié)課在教材中的地位作用

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數(shù)計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標要求學生必須掌握。

(二)、教學目標:

根據(jù)數(shù)學課標的要求和教材的具體內(nèi)容,結(jié)合學生實際我確定了本節(jié)課的教學目標。

知識技能:

1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形

過程與方法:

1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程

2、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形結(jié)合方法的應用

3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

情感態(tài)度:

1、通過用三角形三邊的數(shù)量關系來判斷三角形的形狀,體驗數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關系

2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

(三)、學情分析:

盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節(jié)課的重點、難點和關鍵。

重點:勾股定理逆定理的應用

難點:勾股定理逆定理的證明

關鍵:輔助線的添法探索

二、教學過程:

本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結(jié)構(gòu)與幾何知識結(jié)構(gòu)之間筑了一個信息流通渠道,進而達到完善學生的數(shù)學認識結(jié)構(gòu)的目的。

(一)、復習回顧:  復習回顧與勾股定理有關的內(nèi)容,建立新舊知識之間的聯(lián)系。

(二)、創(chuàng)設問題情境

一開課我就提出了與本節(jié)課關系密切、學生用現(xiàn)有的知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結(jié),然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現(xiàn)馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數(shù)學就在身邊。

三)、學生在教師的指導下嘗試解決問題,總結(jié)規(guī)律(包括難點突破)

因為幾何來源于現(xiàn)實生活,對初二學生來說選擇適當?shù)臅r機,讓他們從個體實踐經(jīng)驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據(jù)學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數(shù)學模型。

接下來就是利用這個數(shù)學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現(xiàn)了從生動直觀向抽象思維的轉(zhuǎn)化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。

(四)、組織變式訓練

本著由淺入深的原則,安排了三個題目。(演示)第一題比較簡單,讓學生口答,讓所有的學生都能完成。第二題則進了一層,字母代替了數(shù)字,繞了一個彎,既可以檢查本課知識,又可以提高靈活運用以往知識的能力。第三題則要求更高,要求學生能夠推出可能的結(jié)論,這些作法培養(yǎng)了學生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學生的思維,提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋,調(diào)節(jié)教法,同時注意加強有針對性的個別指導,把發(fā)展學生的思維和隨時把握學生的學習效果結(jié)合起來。

(五)、歸納小結(jié),納入知識體系

本節(jié)課小結(jié)先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并告訴同學今天的勾股定理逆定理是同學們通過自己親手實踐發(fā)現(xiàn)并證明的,這種討論問題的方法是培養(yǎng)我們發(fā)現(xiàn)問題認識問題的好方法,希望同學在課外練習時注意用這種方法,這都是教給學習方法。

(六)、作業(yè)布置

由于學生的思維素質(zhì)存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。A組是基本的思維訓練項目,全體都要做,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數(shù)學的信心。B組題適當加大難度,拓寬知識,供有能力又有興趣的學生做,日積月累,對訓練和培養(yǎng)他們的思維素質(zhì),發(fā)展學生的個性有積極作用。

三、說教法、學法與教學手段

為貫徹實施素質(zhì)教育提出的面向全體學生,使學生全面發(fā)展主動發(fā)展的精神和培養(yǎng)創(chuàng)新活動的要求,根據(jù)本節(jié)課的教學內(nèi)容、教學要求以及初二學生的年齡和心理特征以及學生的認知規(guī)律和認知水平,本節(jié)課我主要采用了以學生為主體,引導發(fā)現(xiàn)、操作探究的教學方法,即不違反科學性又符合可接受性原則,這樣有利于培養(yǎng)學生的學習興趣,調(diào)動學生的學習積極性,發(fā)展學生的思維;有利于培養(yǎng)學生動手、觀察、分析、猜想、驗證、推理能力和創(chuàng)新能力;有利于學生從感性認識上升到理性認識,加深對所學知識的理解和掌握;有利于突破難點和突出重點。

此外,本節(jié)課我還采用了理論聯(lián)系實際的教學原則,以教師為主導、學生為主體的教學原則,通過聯(lián)系學生現(xiàn)有的經(jīng)驗和感性認識,由最鄰近的知識去向本節(jié)課遷移,通過動手操作讓學生獨立探討、主動獲取知識。

總之,本節(jié)課遵循從生動直觀到抽象思維的認識規(guī)律,力爭最大限度地調(diào)動學生學習的積極性;力爭把教師教的過程轉(zhuǎn)化為學生親自探索、發(fā)現(xiàn)知識的過程;力爭使學生在獲得知識的過程中得到能力的培養(yǎng)。

作者:不詳 來源:網(wǎng)絡
相關文章
  • 文武教師招聘網(wǎng)(www.yufengm.com) © 2012 版權(quán)所有 All Rights Reserved.
  • 站長聯(lián)系QQ:799752985 浙ICP備11036874號-1
  • Powered by 文武教師招聘網(wǎng)